Publications

Areas of research


Transistor Laser / LET / Optoelectronics

“Energy efficient microcavity laser with 20 and 40 Gb/s data transmission” F. Tan, C. H. Wu, M. Feng, and N. Holonyak. , 2011. Appl.Phys.Lett.98, 191107

“Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,”  F. Tan, R. Bambery, M. Feng, and N. Holonyak. , 2011. Appl.Phys.Lett.99, 061105

“Transistor Laser Power Stabilization Using Direct Collector Current Feedback Control,” E.W. Iverson, M. Feng, 2012.  Photonics Technology Letters, IEEE. vol.24, no.1, pp.4-6

“Bandfilling and photon-assisted tunneling in a quantum-well transistor laser,” M. Feng, R. Bambery and N. Holonyak. , 2011. Appl.Phys.Lett. 98, 123505.

“The Metamorphosis of the Transistor into a Laser,” M. Feng and N. Holonyak Jr. , 2011. Opt.Photonics News 22, 3, 44-49.

“Temperature dependence of a high-performance narrow-stripe (1 μm) single quantum-well transistor laser,” M. Feng, N. Holonyak and A. James. , 2011. Appl.Phys.Lett. 98, 5, 051107-051107-3.

“The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” CH Wu, F. Tan, MK Wu, M. Feng and N. Holonyak. , 2011. J.Appl.Phys. 109, 053112.

“Design and operation of distributed feedback transistor lasers,” F. Dixon, M. Feng and N. Holonyak Jr. , 2010. J.Appl.Phys. 108, 093109.

“Distributed feedback transistor laser,” F. Dixon, M. Feng and N. Holonyak. , 2010. Appl.Phys.Lett. 96, 24, 241103-241103-3.

“Physics of base charge dynamics in the three port transistor laser,” H. W. Then, M. Feng and N. Holonyak Jr. , 2010. Appl.Phys.Lett. 96, 113509.

“Stochastic base doping and quantum-well enhancement of recombination in an npn light-emitting transistor or transistor laser,” H. W. Then, C. H. Wu, M. Feng, N. Holonyak Jr and G. Walter. , 2010. Appl.Phys.Lett. 96, 263505.

“Microwave circuit model of the three-port transistor laser,” HW Then, M. Feng and N. Holonyak. , 2010. J.Appl.Phys. 107, 9, 094509-094509-7.

“The effect of mode spacing on the speed of quantum-well microcavity lasers,” CH Wu, F. Tan, M. Feng and N. Holonyak Jr. , 2010. Appl.Phys.Lett. 97, 091103.

“Microwave determination of electron-hole recombination dynamics from spontaneous to stimulated emission in a quantum-well microcavity laser,” CH Wu, HW Then, M. Feng and N. Holonyak Jr. , 2010. Appl.Phys.Lett. 96, 131108.

“Tunnel junction transistor laser,” M. Feng, N. Holonyak Jr, H. W. Then, C. H. Wu and G. Walter. , 2009. Appl.Phys.Lett. 94, 041118.

“Resonance-free frequency response of a semiconductor laser,” M. Feng, H. W. Then, N. Holonyak Jr, G. Walter and A. James. , 2009. Appl.Phys.Lett. 95, 033509.

“Bandwidth extension by trade-off of electrical and optical gain in a transistor laser: Three-terminal control,” H. W. Then, M. Feng and N. Holonyak Jr. , 2009. Appl.Phys.Lett. 94, 013509.

“Electrical-optical signal mixing and multiplication (2→ 22 GHz) with a tunnel junction transistor laser,” H. W. Then, C. H. Wu, G. Walter, M. Feng and N. Holonyak Jr. , 2009. Appl.Phys.Lett. 94, 101114.

“4.3 GHz optical bandwidth light emitting transistor,” G. Walter, C. H. Wu, H. W. Then, M. Feng and N. Holonyak Jr. , 2009. Appl.Phys.Lett. 94, 241101.

“Tilted-charge high speed (7 GHz) light emitting diode,” G. Walter, C. H. Wu, H. W. Then, M. Feng and N. Holonyak Jr. , 2009. Appl.Phys.Lett. 94, 231125.

“Scaling of light emitting transistor for multigigahertz optical bandwidth,” C. H. Wu, G. Walter, H. W. Then, M. Feng and N. Holonyak Jr. , 2009. Appl.Phys.Lett. 94, 171101.

“4-GHz Modulation Bandwidth of Integrated 2×2 LED Array,” C. H. Wu, G. Walter, H. W. Then, M. Feng and N. Holonyak. , 2009. Photonics Technology Letters, IEEE 21, 24, 1834-1836.

“Transistor laser with emission wavelength at 1544; nm,” F. Dixon, M. Feng, N. Holonyak, et al. , 2008. Appl.Phys.Lett. 93, 2, 021111-021111-3.

“Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal,” H. W. Then, G. Walter, M. Feng and N. Holonyak Jr. , 2008. Appl.Phys.Lett. 93, 163504.

“Modulation of high current gain (β> 49) light-emitting InGaN∕ GaN heterojunction bipolar transistors,” B. F. Chu-Kung, C. H. Wu, G. Walter, et al. , 2007. Appl.Phys.Lett. 91, 232114.

“Quantum Well Transistor Laser,” M. Feng, N. Holonyak Jr and G. Walter. , 2007.

“Charge control analysis of transistor laser operation,” M. Feng, N. Holonyak, HW Then and G. Walter. , 2007. Appl.Phys.Lett. 91, 5, 053501-053501-3.

“Franz–Keldysh Photon-Assisted Voltage-Operated Switching of a Transistor Laser,” A. James, N. Holonyak, M. Feng and G. Walter. , 2007. Photonics Technology Letters, IEEE 19, 9, 680-682.

“Photon-assisted breakdown, negative resistance, and switching in a quantum-well transistor laser,” A. James, G. Walter, M. Feng and N. Holonyak Jr. , 2007. Appl.Phys.Lett. 90, 152109.

“Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well npn heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping,” H. W. Then, M. Feng, N. Holonyak and C. H. Wu. , 2007. Appl.Phys.Lett. 91, 3, 033505-033505-3.

“Collector characteristics and the differential optical gain of a quantum-well transistor laser,” H. W. Then, G. Walter, M. Feng and N. Holonyak Jr. , 2007. Appl.Phys.Lett. 91, 243508.

“Optical bandwidth enhancement by operation and modulation of the first excited state of a transistor laser,” HW Then, M. Feng and N. Holonyak. , 2007. Appl.Phys.Lett. 91, 18, 183505-183505-3.

“Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” G. Walter, A. James, N. Holonyak Jr and M. Feng. , 2007. Appl.Phys.Lett. 90, 091109.

“Collector current map of gain and stimulated recombination on the base quantum well transitions of a transistor laser,” R. Chan, M. Feng, N. Holonyak, A. James and G. Walter. , 2006. Appl.Phys.Lett. 88, 14, 143508-143508-3.

“Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors,” B. F. Chu-Kung, M. Feng, G. Walter, et al. , 2006. Appl.Phys.Lett. 89, 8, 082108-082108-3.

“Visible spectrum light-emitting transistors,” F. Dixon, R. Chan, G. Walter, et al. , 2006. Appl.Phys.Lett. 88, 012108.

“Signal mixing in a multiple input transistor laser near threshold,” M. Feng, N. Holonyak Jr, R. Chan, A. James and G. Walter. , 2006. Appl.Phys.Lett. 88, 063509.

“High-speed (/spl ges/1 GHz) electrical and optical adding, mixing, and processing of square-wave signals with a transistor laser,” M. Feng, N. Holonyak, R. Chan, A. James and G. Walter. , 2006. Photonics Technology Letters, IEEE 18, 11, 1240-1242.

“Carrier lifetime and modulation bandwidth of a quantum well AlGaAs/InGaP/GaAs/InGaAs transistor laser,” M. Feng, N. Holonyak, A. James, K. Cimino, G. Walter and R. Chan. , 2006. Appl.Phys.Lett. 89, 11, 113504-113504-3.

“The transistor laser,” N. Holonyak Jr and M. Feng. , 2006. Spectrum, IEEE 43, 2, 50-55.

“Collector breakdown in the heterojunction bipolar transistor laser,” G. Walter, A. James, N. Holonyak Jr, M. Feng and R. Chan. , 2006. Appl.Phys.Lett. 88, 232105.

“Microwave operation and modulation of a transistor laser,” R. Chan, M. Feng, N. Holonyak Jr and G. Walter. , 2005. Appl.Phys.Lett. 86, 131114.

“Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” M. Feng, N. Holonyak, G. Walter and R. Chan. , 2005. Appl.Phys.Lett. 87, 13, 131103-131103-3.

“Laser operation of a heterojunction bipolar light-emitting transistor,” R. Chan, M. Feng and G. Walter. , 2004. Appl.Phys.Lett. 85, 20, 4768.

“Quantum-well-base heterojunction bipolar light-emitting transistor,” M. Feng, N. Holonyak Jr and R. Chan. , 2004. Appl.Phys.Lett. 84, 1952.

“Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor,” M. Feng, N. Holonyak Jr, B. Chu-Kung, G. Walter and R. Chan. , 2004. Appl.Phys.Lett. 84, 4792.

“Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” M. Feng, N. Holonyak Jr and W. Hafez. , 2004. Appl.Phys.Lett. 84, 151.

“Laser operation of a heterojunction bipolar light-emitting transistor,” G. Walter, N. Holonyak, M. Feng and R. Chan. , 2004. Appl.Phys.Lett. 85, 20, 4768-4770.

Novel High Speed Device Technology

“Base charge accumulation and push-out effects on nonlinearity of Type-I InP/InGaAs/InP and Type-I/II AlInP/GaAsSb/InP double heterojunction bipolar transistors,” K. Y. (Donald) Cheng, H. Xu, M. E. Stuenkel, E. W. Iverson, C. C. Liao, K. W. Yang, M. Feng, and K. Y. (Norman) Cheng, 2011.

“150 nm InP HBT Process with Two-Level Airbridge Interconnects and MIM Capacitors for Sub-Millimeter Wave Research,” W. Snodgrass, M. Stuenkel and M. Feng. , 2009.

“Process development and characteristics of nano III-V MOSFET,” D. Cheng, C. Liao, KY Cheng and M. Feng. , 2008. 339–342.

“Nano-scale type-II InP/GaAsSb DHBTs to reach THz cutoff frequencies,” W. Snodgrass and M. Feng. , 2008. 277–280.

“InP pseudormorphic heterojunction bipolar transistor (PHBT) with ft> 750GHz,” M. Feng and W. Snodgrass. , 2007. 399-402.

“Type-II GaAsSb/InP DHBTs with Record fT= 670 GHz and Simultaneous fT, fMAX≫ 400 GHz,” W. Snodgrass, B. R. Wu, KY Cheng and M. Feng. , 2007. 663-666.

“High-speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers,” B. R. Wu, W. Snodgrass, M. Feng and KY Cheng. , 2007. J.Cryst.Growth 301, 1005-1008.

“Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, RD Dupuis, B. Chu-Kung, M. Feng and DM Keogh. , 2006. Appl.Phys.Lett. 88, 183501.

“Pseudomorphic InP/InGaAs heterojunction bipolar transistors (PHBTs) experimentally demonstrating fT= 765 GHz at 25 C increasing to fT= 845 GHz at− 55 C,” W. Snodgrass, W. Hafez, N. Harff and M. Feng. , 2006. IEDM Tech.Dig 595–598.

“Graded base type-II InP/GaAsSb DHBT with ft= 475 GHz,” W. Snodgrass, B. R. Wu, W. Hafez, K. Y. Cheng and M. Feng. , 2006. Electron Device Letters, IEEE 27, 2, 84-86.

“Performance enhancement of composition-graded-base type-II InP/GaAsSb double-heterojunction bipolar transistors with fT> 500 GHz,” W. Snodgrass, B. R. Wu, W. Hafez, KY Cheng and M. Feng. , 2006. Appl.Phys.Lett. 88, 22, 2101.

“High performance GaAsSb/InP double heterojunction bipolar transistors grown by gas-source molecular beam epitaxy,” B. R. Wu, B. F. Chu-Kung, M. Feng and KY Cheng. , 2006. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, 3, 1564-1567.

“Ultra-high speed composition graded InGaAsSb/GaAsSb DHBTs with f/sub T/= 500 GHz grown by gas-source molecular beam epitaxy,” B. R. Wu, W. Snodgrass, W. Hafez, M. Feng and KY Cheng. , 2006. 89-91.

“10-GHz power performance of a type II InP/GaAsSb DHBT,” D. C. Caruth, B. F. Chu-Kung and M. Feng. , 2005. Electron Device Letters, IEEE 26, 9, 604-606.

“Process and performance improvements to type-II GaAsSb/InP DHBTs,” B. F. Chu-Kung, S. C. Shen, W. Hafez and M. Feng. , 2005. 199-202.

“High performance, sub-50nm MOSFETS for mixed signal applications,” V. Dimitrov, JB Heng, K. Timp, O. Dimauro, R. Chan, J. Feng, W. Hafez, T. Sorsch, W. Mansfield and J. Miner. , 2005. 4 pp.-207.

“Experimental demonstration of pseudomorphic heterojunction bipolar transistors with cutoff frequencies above 600; GHz,” W. Hafez and M. Feng. , 2005. Appl.Phys.Lett. 86, 15, 152101-152101-3.

“12.5 nm base pseudomorphic heterojunction bipolar transistors achieving f= 710 GHz and f= 340 GHz,” W. Hafez, W. Snodgrass and M. Feng. , 2005. Appl.Phys.Lett. 87, 252109.

“InP/GaAsSb type-II DHBTs with fT> 350 GHz,” BF Chu-Kung and M. Feng. , 2004. Electron.Lett. 40, 20, 1305-1306.

“Over 500 GHz InP heterojunction bipolar transistors,” M. Feng, W. Hafez and J. W. Lai. , 2004. 653-658.

“Device technologies for RF front-end circuits in next-generation wireless communications,” M. Feng, S. C. Shen, D. C. Caruth and J. J. Huang. , 2004. Proc IEEE 92, 2, 354-375.

“Junction temperature and thermal resistance of ultrafast sub-micron InP/InGaAs SHBTs,” W. Hafez, R. Eden, F. Dixon and M. Feng. , 2004. 269-272.

“0.25 μm emitter InP SHBTs with fT= 550 GHz and BVCEO> 2V,” W. Hafez and M. Feng. , 2004. 549-552.

“Lateral scaling of 0.25 μm InP/InGaAs SHBTs with InAs emitter cap,” W. Hafez and M. Feng. , 2004. Electron.Lett. 40, 18, 1151-1153.

“Polyimide passivated AlGaN-GaN HFETs with 7.65 W/mm at 18 GHz,” M. D. Hampson, S. C. Shen, R. S. Schwindt, R. K. Price, U. Chowdhury, M. M. Wong, T. G. Zhu, D. Yoo, R. D. Dupuis and M. Feng. , 2004. Electron Device Letters, IEEE 25, 5, 238-240.

“Vertical scaling of type I InP HBT with fT> 500 GHz,” JW Lai, W. Hafez and M. Feng. , 2004. 1-7.

“Vertical scaling of 0.25-μm emitter InP/InGaAs single heterojunction bipolar transistors with fT of 452 GHz,” W. Hafez, J. W. Lai and M. Feng. , 2003. Electron Device Letters, IEEE 24, 7, 436-438.

“Submicron InP-InGaAs single heterojunction bipolar transistors with fT of 377 GHz,” W. Hafez, J. W. Lai and M. Feng. , 2003. Electron Device Letters, IEEE 24, 5, 292-294.

“Low-power high-speed operation of submicron InP-InGaAs SHBTs at 1 mA,” W. Hafez, J. W. Lai and M. Feng. , 2003. Electron Device Letters, IEEE 24, 7, 427-429.

“InP/InGaAs SHBTs with 75 nm collector and fT> 500 GHz,” W. Hafez, J. W. Lai and M. Feng. , 2003. Electron.Lett. 39, 20, 1475-1476.

“Record fT and fT fMAX performance of InP/InGaAs single heterojunction bipolar transistors,” W. Hafez, JW Lai and M. Feng. , 2003. Electron.Lett. 39, 10, 811-813.

“Submicron scaling InP/InGaAs single heterojunction bipolar transistor technology with fT> 400 GHz for> 100 GHz applications,” JW Lai, W. Hafez, R. Chan, YJ Chuang, D. Caruth and M. Feng. , 2003. 215-218.

“Sub-Micron Scaling of High-Speed InP/InGaAs SHBTs grown by MOCVD using Carbon as the P-Type Dopant,” ML Hattendorf, QJ Hartmann, K. Richards and M. Feng. , 2002. 255-258.

“1.55-μm asymmetric Fabry-Perot modulator (AFPM) for high-speed applications,” J. J. Huang, T. Chung, M. Lerttamrab, S. L. Chuang and M. Feng. , 2002. Photonics Technology Letters, IEEE 14, 12, 1689-1691.

“Direct ion-implanted enhancement/depletion-mode GaAs MESFETs with Ft greater than 120 GHz and Fmax greater than 166 GHz for millimeter wave circuit applications” D. Becher, S.C. Shen, D. Caruth, Z. Tang, and M. Feng, submitted to IEEE Trans. On Electron Devices

“Development of broadband low-actuation-voltage RF MEM switches” S.C. Shen, Z. Fan, D. Becher, D. Caruth, and M. Feng, submitted to Special issue of APEC in Discrete Micro-Components for H.F. Applications

“Selective Area Growth and Characterization of AlGaN/GaN Heterojunction Bipolar Transistors by Metalorganic Chemical Vapor Deposition” B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, IEEE, Trans. Electron. Devices, to be published

“Current Progress in GaN HBTs with a Current Gain 27″ J. J. Huang, David Caruth and Milton Feng D. J. H. Lambert, B. S. Shelton, M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, 2001 Government Microcircuit Applications Conference

“Process Optimization for RF Performance of Ion-Implanted E/D MESFETs” D. Becher, S. C. Shen, D. Caruth, and M. Feng, 2001 GaAs MANTECH

“Incorporation of an Alloy-Through Passivating-Ledge process into a Fullly Self-Aligned InGaAs/GaAs HBT process” M. Hattendorf, A. Hartmann, and M. Feng, 2001 GaAs MANTECH

“Development of broadband low-voltage RF MEM Switches” S. C. Shen, D. T. Becher, D. C. Caruth, and M. Feng, 2001 GaAs MANTECH

“Common Emitter Current Gain and Collector-Emitter Offset Voltage Study in AlGaN/GaN Heterojunction Bipolar Transistors”
J. J. Huang, Michael Hattendorf, and Milton Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, IEEE, Electron Device Lett., to be published in March, 2001

“Comparison of AlGaN/GaN HFETs on Sapphire and SiC substrates” B. Shelton, S.C. Shen, D. Lambert, T.Zhu, M. Wong, U. Chowdhury, H. Kwon, K. Kim, J. Denyszyn, M. Feng, and R. Dupuis, to be presented in Tenth Biennial Organometallic Vapor Phase Epitaxy Workshop, March 11-15, 2001

“Sub-10volts RF MEM switches” S.C. Shen, D. Becher, D. Caruth, and M. Feng, to be presented in 2001 Government Microcircuit Application Conference, Mar. 3, 2001

“Broadband low actuation voltage RF MEM switches” S.C. Shen, D. Caruth, and M.Feng, IEEE 2000 GaAs IC Symposium Digest, Nov. 5-8, 2000

“Properties of AlGaN/GaN Heterostructure Electronic Devices Grown by Metalorganic Chemical Vapor Deposition” R. Dupuis, D. J. H. Lambert, U. Chowdhury, M. M. Wong, T. G. Zhu, B. S. Shelton, and Ho Ki Kwon, J. J. Huang, S. C. Shen and M. Feng, Next Generation mm-Wave Solid State Power Workshop, Oct. 22nd, 2000

“Graded-Emitter AlGaN/GaN Heterojunction Bipolar Transistors” J. J. Huang, M. Hattendorf, and Milton Feng D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, IEEE, Electron. Lett. 36, pp1239-1240, 2000

“The Growth of AlGaN/GaN Heterojunction Bipolar Transistors by Metalorganic Chemical Vapor Deposition”
B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, M. Feng, Z. Liliental-Weber, M. Benarama, and R. D. Dupuis, 2000, Nov. Journal of Crystal Growth for ICMOVPE X

“Magnesium Memory Effects inAlGaN/GaN HBTs Grown by Metalorganic Chemical Vapor Deposition” D.J.H. Lambert, B.S. Shelton, M.M. Wong, U. Chowdhurry, H.K.Kwon, T.G. Zhu, J.J. Huang, M. Feng. R. D. Dupuis, 2000 Electronic materials conference

“AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition” B.S. Shelton, J.J. Huang, D.J.H. Lambert, T.G. Zhu, M. M. Wong, C. J. Eiting, H.K.Kwon, M. Feng and R. D. Dupuis, Electronics Letters 36, 1, 2000 pp 80-81

“Process Development on 0.12-um Gate E/D GaAs Mesfets with fT and fmax > 100GHz Using Direct Ion Implantation for Low Power IC” Z. Tang, H. Hsia, D. Becher, D. Caruth, and M. Feng, 2000 GaAs MANTECH

“Low actuation voltage RF MEMS switches with signal frequency from 0.25GHz to 40GHz” S. C. Shen and M. Feng, IEEE International Electron Device Meetings 1999, Dec. 5-8, 1999

“DC and microwave performance evaluation of 100GHz ion-implanted MESFET and MOCVD epitaxial doped-channel HFET” Z. Tang, H. Hsia, R. Shimon, D. Caruth, D.Becher, S. Shen, and M. Feng, 26th Intl. Symp. on Compound Semiconductors, Berlin, Germany, Aug. 22-26,1999

“Activation of silicon ion-implanted gallium nitride by furnace annealing” Dupuis, R D. Eiting, C J. Grudowski, P A. Hsia, H. Tang, Z. Becher, D. Kuo, H. Stillman, G E. Feng, M. Journal of Electronic Materials. v 28 n 3 1999. p 319-324

“Temperature dependence of InGaP/GaAs heterojunction bipolar transistor DC and small-signal behavior” Ahmari, David A. Raghavan, Gopal. Hartmann, Quesnell J. Hattendorf, Michael L. Feng, M. EEE Transactions on Electron Devices. v 46 n 4 1999. p 634-640

“Low Actuation Voltage RF MEMS Switches With Signal Frequencies From 0.25 GHz to 40 GHz” S.C. Shen and M. Feng, International Electron Devices Meeting 1999 PDF

“Manufacturable InGaP/InGaAs/InP Doped-channel HFETs with ft and fmax over 170 GHz” Z. Tang, H. Hsia, H.C. Kuo, D. Caruth, G.E. Stillman and M. Feng, 1999 GaAs MANTECH

“Direct Ion-Implanted GaAs MESFET with ft of 121 GHz and fmax of 160 GHz” H. Hsia, Z. Tang, D. Caruth, D. Becher, and M. Feng, IEEE Electron Device Letters, May 1999

“InGaP/GaAs HFETs: Manufacturable High-Speed Devices” Q.J. Hartman, A. Mahajan, D. Becher, H. Hsia, D.A. Ahmari, Q. Yang, I. Adesida, M. Feng, and G. E. Stillman, 1998 GaAs MANTECH

“InGaP/GaAs heterojunction bipolar transistor grown on a semi-insulating InGaP buffer layer” Ahmari, D A. Fresina, M T. Hartmann, Q J. Barlage, D W. Feng, M. Stillman, G E. IEEE Electron Device Letters. v 18 n 11 Nov 1997. p 559-561

“High temperature superconducting resonators and switches: design, fabrication, and characterization” Feng, Milton. Gao, Frank. Zhou, Zhongmin. Kruse, Jay. Heins, Matt. Wang, Jianshi. Remillard, S. Lithgow, R. Scharen, M. Cardona, A. Forse, R IEEE Transactions on Microwave Theory & Techniques. v 44 n 7 pt 2 Jul 1996. p 1347-1355

“Noise Performance of Low Power 0.25 Micron Gate Ion Implanted D-Mode GaAs MESFET for Wireless Applications” P.J. Apostolakis, J.R. Middleton, D. Scherrer and M. Feng, IEEE Electron Device Letters, July 1994

“Microwave Performance of Low-Power Ion-Implanted 0.25-Micron Gate GaAs MESFET for Low-Cost MMIC’s Applications” P.J. Apostolakis, J.R. Middleton, J. Kruse, D. Scherrer, D. Barlage and M. Feng, IEEE Microwave and Guided Wave Letters, August 1993

“On the speed and noise performance of direct ion-implanted GaAs MESFETs,” M. Feng and J. Laskar. , 1993. Electron Devices, IEEE Transactions on 40, 1, 9-17.

“Temperature-dependent bit-error-rate characterization of ultralow-noise GaAs MESFET’s for 3-Gb/s operation,” J. Laskar, M. Feng and J. Kruse. , 1993. Electron Device Letters, IEEE 14, 2, 57-59.

“Low-power performance of 0.5-μm JFET for low-cost MMIC’s in personal communications,” D. Scherrer, J. Kruse, J. Laskar, M. Feng, M. Wada, C. Takano and J. Kasahara. , 1993. Electron Device Letters, IEEE 14, 9, 428-430.

“11 GHz Bandwidth GaAs MESFET/MSM OEIC Receivers,” JS Wang, CG Shih, WH Chang, J. Middleton, PJ Apostolakis and M. Feng. , 1993. 1047-1050 vol. 2.

“11 GHz bandwidth optical integrated receivers using GaAs MESFET and MSM technology,” JS Wang, CG Shih, WH Chang, JR Middleton, PJ Apostolakis and M. Feng. , 1993. Photonics Technology Letters, IEEE 5, 3, 316-318.

“Super-low-noise performance of direct-ion-implanted 0.25-μm-gate GaAs MESFET’s,” M. Feng, J. Laskar and J. Kruse. , 1992. Electron Device Letters, IEEE 13, 5, 241-243.

“Ultra low-noise performance of 0.15-micron gate GaAs MESFET’s made by direct ion implantation for low-cost MMIC’s applications,” M. Feng, J. Laskar, J. Kruse and R. Neidhard. , 1992. Microwave and Guided Wave Letters, IEEE 2, 5, 194-195.

“Cryogenic microwave performance of 0.5-μm InGaAs MESFET’s,” S. Maranowski, J. Laskar, M. Feng and J. Kolodzey. , 1992. Electron Device Letters, IEEE 13, 1, 64-66.

“GaAs quantum-well infrared detectors grown on 3-inch GaAs and silicon substrates (Proceedings Paper),” D. K. Sengupta, T. U. Horton, P. J. Apostolakis, C. A. Rowe, P. Mares, M. Feng, G. E. Stillman, M. Dodd, S. L. Cooper and W. I. Wang. , 1992.

“Reduced lattice temperature high‐speed operation of pseudomorphic InGaAs/GaAs field‐effect transistors,” J. Laskar, S. Maranowski, S. Caracci, M. Feng and J. Kolodzey. , 1991. Appl.Phys.Lett. 59, 19, 2412-2414.

Mixed Signal/Microwave Circuit Design and Device Modeling

D. Chan and M. Feng, “A Compact W-Band CMOS Power Amplifier with Gain Boosting and Short-circuited Stub Matching for High Power and High Efficiency Operation,” in IEEE Microwave and Wireless Components Letter, vol. 21, issue 2, pp. 98-100, Feb 2011.

D. Chan and M. Feng, “W-band monolithic CPW Wilkinson CMOS power amplifier,” in IEEE Topical Conf. on Power Amplif. for Wireless and Radio Appl., Jan. 2011, pp. 33-36.

D. Chan and M. Feng, “Distributed Modeling of Layout Parasitics Effects in CMOS Power Devices”, European Microwave Conference, Sept. 2010, pp. 242-245.

“Drifting-Dipole Noise (DDN) Model of MOSFETs for Microwave Circuit Design,” G. D. Nguyen and M. Feng. , 2010. Microwave Theory and Techniques, IEEE Transactions on 58, 12, 3433-3443.

“24-GHz low noise amplifier using coplanar waveguide series feedback in 130-nm CMOS,” G. D. Nguyen, Yun Chiu and M. Feng. , 2009. Microwave Conference, 2009. APMC 2009. Asia Pacific 1148-1151.

D. Chan and M. Feng, “2.5 GHz CMOS Power Amplifier Integrated with Low Loss Matching Network for WiMAX Applications” Asia Pacific Microwave Conference, 2009, pp. 1108-1111.

“Radio-Frequency-Noise Characterization and Modeling of Type-II InP–GaAsSb DHBT,” Y. J. Chuang, K. Cimino, M. Stuenkel, W. Snodgrass and M. Feng. , 2008. Electron Device Letters, IEEE 29, 1, 21-23.

“A RF CMOS amplifier with optimized gain, noise, linearity and return losses for UWB applications,” G. D. Nguyen, K. Cimino and M. Feng. , 2008. 505-508.

“A wideband InP DHBT true logarithmic amplifier,” Y. J. Chuang, K. Cimino, M. Stuenkel, M. Feng, M. Le and R. Milano. , 2006. Microwave Theory and Techniques, IEEE Transactions on 54, 11, 3843-3847.

“Design of variable gain amplifier with gain-bandwidth product up to 354 GHz implemented in InP-InGaAs DHBT technology,” J. W. Lai, Y. J. Chuang, K. Cimino and M. Feng. , 2006. Microwave Theory and Techniques, IEEE Transactions on 54, 2, 599-607.

“300 GHz InP DHBT large signal model including current blocking effect and validated by Gilbert multiplier circuits,” JW Lai, D. Caruth, YJ Chuang, K. Cimino, R. Elder, D. Jansen, F. Stroili, M. Le and M. Feng. , 2005. 4 pp.

“Observations of Current Blocking in InP/GaAsSb DHBTs,” B. F. Chu-Kung, S. C. Shen, W. Hafez and M. Feng. , 2004.

“Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier,” Q. He and M. Feng. , 2004. Solid-State Circuits, IEEE Journal of 39, 6, 956-959.

“Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles,” R. Chan, R. Lesnick, D. Becher and M. Feng. , 2003. Microelectromechanical Systems, Journal of 12, 5, 713-719.

“Ultra broadband MEMS switch on Silicon and GaAs substrates,” R. Chan, R. Lesnick, D. Caruth and M. Feng. , 2003.

“Reliability study of low-voltage RF MEMS switches,” D. Becher, R. Chan, M. Hattendorf and M. Feng. , 2002. 54-57.

“A 40 Gb/s integrated differential PIN TIA with DC offset control using InP SHBT technology,” D. Caruth, SC Shen, D. Chan, M. Feng and J. Schutt-Aine. , 2002. 59-62.

“Method to determine intrinsic and extrinsic base-collector capacitance of HBTs directly from bias-dependent S-parameter data,” M. Hattendorf, D. Scott, Q. Yang and M. Feng. , 2001. Electron Device Letters, IEEE 22, 3, 116-118.

“Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” JJ Huang, M. Hattendorf, M. Feng, DJH Lambert, BS Shelton, MM Wong, U. Chowdhury, TG Zhu, HK Kwon and RD Dupuis. , 2001. Electron Device Letters, IEEE 22, 4, 157-159.

“Low-cost 38 and 77 GHz CPW MMICs using ion-implanted GaAs MESFETs,” DC Caruth, RL Shimon, MS Heins, H. Hsia, Z. Tang, SC Shen, D. Becher, JJ Huang and M. Feng. , 2000. 2, 995-998 vol. 2.

“Impact of 1/f noise in Ka-band InGaP/GaAs HBT frequency sources,” MS Heins, MS Hein, T. Juneja, D. Caruth, M. Hattendorf and M. Feng. , 2000. 2, 1209-1212 vol. 2.

“Low-power decimation filters for oversampling ADCs via the decorrelating(DECOR) transform,” D. Seo, N. R. Shanbhag and M. Feng. , 2000. 3,

“A 14 bit, 1 GS/s digital-to-analog converter with improved dynamic performances,” D. Seo, A. Weil and M. Feng. , 2000. 5, 541-544 vol. 5.

“W-band InGaP/GaAs HBT MMIC frequency sources,” MS Heins, T. Juneja, JA Fendrich, J. Mu, D. Scott, Q. Yang, M. Hattendorf, GE Stillman and M. Feng. , 1999. 1, 239-242 vol. 1.

“Exact noise parameters of lossy transmission lines,” R. Shimon and M. Feng. , 1999. 1, 47-50 vol. 1.

“Bandgap shifting of an ultra-thin InGaAs/InP quantum well infrared photodetector via rapid thermal annealing” Sengupta, D K. Kim, S. Kuo, H C. Curtis, A P. Hsieh, K C. Bishop, S G. Feng, M. Stillman, G E. Gunapala, S D. Bandara, S V. Chang, Y C. Liu, H C. Rapid Thermal and Integrated Processing VII Materials Research Society Symposium – Proceedings. v 525 1998. MRS, Warrendale, PA, USA. p 385-390

“Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering”
Sengupta, Deepak. Jandhyala, Vikram. Kim, Sangsig. Fang, Weich. Malin, Jay. Apostolakis, Peter. Hsieh, Kwong-Chi. Chang, Yia-Chung. Chuang, Shun Lien. Bandara, Sumith. Gunapala, Sarath. Feng, Milton. Michielssen, Eric. Stillman, Greg. IEEE Journal of Selected Topics in Quantum Electronics. v 4 n 4 Jul-Aug 1998. p 746-757

“Efficient analysis of large two-dimensional arbitrarily shaped finite gratings for quantum well infrared photodetectors”
Jandhyala, Vikram. Sengupta, Deepak. Shanker, Balasubramaniam. Michielssen, Eric. Feng, Milton. Stillman, Greg. Annual Review of Progress in Applied Computational Electromagnetics. v 1 1998. Applied Computational Electromagnetics Soc, Monterey, CA, USA. p 204-209

“Efficient electromagnetic analysis of two-dimensional finite quasi-random gratings for quantum well infrared photodetectors”
Jandhyala, Vikram. Sengupta, Deepak. Shanker, Balasubramaniam. Michielssen, Eric. Feng, Milton. Stillman, Greg. Journal of Applied Physics. v 83 n 6 Mar 15 1998. p 3360-3363

“Growth and characterization of InGaAs/InP p-quantum-well infrared photodetectors with extremely thin quantum wells”
Sengupta, D K. Jackson, S L. Curtis, A P. Fang, W. Malin, J I. Horton, T U. Kuo, H C. Moy, A. Miller, J. Hsieh, K C. Cheng, K Y. Chen, H. Adesida, I. Chuang, S L. Feng, M. et al. Journal of Electronic Materials. v 26 n 12 Dec 1997. p 1382-1388

“Growth and characterization of n-type InP/InGaAs quantum well infrared photodetectors for response at 8.93 mu m”
Sengupta, D K. Jackson, S L. Curtis, A P. Fang, W. Malin, J I. Horton, T U. Hartman, Q. Kuo, H C. Thomas, S. Miller, J. Hsieh, K C. Adesida, I. Chuang, S L. Feng, M. Stillman, G E. et al. Journal of Electronic Materials. v 26 n 12 Dec 1997. p 1376-1381

“GaAs/AlGaAs quantum-well infrared photodetectors on GaAs-on-Si substrates”
Sengupta, D K. Fang, W. Malin, J I. Li, J. Horton, T. Curtis, A P. Hsieh, K C. Chuang, S L. Chen, H. Feng, M. Stillman, G E. Li, L. Liu, H C. Bandara, K M S V. Gunapala, S D. et al. Applied Physics Letters. v 71 n 1 Jul 7 1997. p 78-80

“64-Gbit/s GaAs integrated DANE receiver/laser driver”
Chang, Wei-Heng. Mu, Jinghui H. Heins, M. Feng, Milton. Kim, J. McCallum, David S. Stone, Richard V. Guilfoyle, Peter S. Proceedings of SPIE – The International Society for Optical Engineering. v 3005 1997. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA. p 334-353

“High-speed two-dimensional OEIC transceiver arrays”
Chang, Wei-Heng. Feng, Milton. Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E/Chung Kuotien Chi Kung Chieng Hsueh K’An. v 4 n 3 Aug 1997. p 213-225

“Design and fabrication of low-power 1-Gb/s OEIC receivers”
Chang, Wei-Heng. Airola, Darwin D. Feng, Milton. Proceedings of SPIE – The International Society for Optical Engineering v CR62 1996. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA.. p 244-266

“Material Design and Qualification on Power InGaP HBTs for 2.4 GHz Transmitter Applications”
J. J. Huang, M. Hattendorf, M. Feng, Q. Hartmann, and D. Ahmari, 2001 GaAs MANTECH

“Low cost 38GHz and 77GHz CPW MMICs using ion-implanted GaAs MESFETs”
D. Caruth, R.L. Shimmon, M. Heins, H. Hsia, Z. Tang, S.C. Shen, D. Becher, and M. Feng, MTT Symposium Digest, June 2000

“A 14 Bit, 1GS/s Digital-To-Analog Converter with Improved Dynamic Performances”
D. Seo, A. Weil, and M. Feng, Accepted, IEEE ISCAS 2000 PS PDF

“A Very Wide-Band 14Bit, 1GS/s Track-and-Hold Amplifier”
D. Seo, A. Weil, and M. Feng Accepted, IEEE ISCAS 2000 PS PDF

“Low-Power Decimation Filters for Oversampling ADCs via the Decorrelating (DECOR) Transform”
D. Seo, N. Shanbhag, and M. Feng Accepted, IEEE ISCAS 2000 PS PDF

“A Low Cost 77 GHz MMICs Process Using Direct Ion-Implanted GaAs MESFETs”
H. Hsia, J.R. Middleton, Z. Tang, R. Shimon, D. Caruth, D. Becher, J. Fendrich, and M. Feng, 1998 GaAs MANTECH

“Low cost coplanar 77 GHz single-balanced mixer using ion-implanted GaAs Schottky diodes”
Shimon, R. Caruth, D. Middleton, J. Hsia, H. Feng, M. Mondal, J. Moghe, S. IEEE MTT-S International Microwave Symposium Digest. v 3 1998. IEEE, Piscataway, NJ, USA,98CH36192. p 1439-1442 TH2E-5

“Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide”
Heins, M S. Barlage, D W. Fresina, M T. Ahmari, D A. Hartmann, Q J. Stillman, G E. Feng, M. IEEE Radio Frequency Integrated Circuits Symposium, RFIC, Digest of Technical Papers 1997. IEEE, Piscataway, NJ, USA,97CH36095.. p 215-218

“Accurate passive component models in coplanar waveguide for 50 GHz MMICs”
Shimon, R. Scherrer, D. Caruth, D. Middleton, J. Hsia, H. Feng, M. IEEE MTT-S International Microwave Symposium Digest. v 2 1997. IEEE, Piscataway, NJ, USA,97CH36037. p 769-772

“Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide”
Heins, M S. Barlage, D W. Fresina, M T. Ahmari, D A. Hartmann, Q J. Stillman, G E. Feng, M. IEEE MTT-S International Microwave Symposium Digest. v 1 1997. IEEE, Piscataway, NJ, USA,97CH36037. p 255-258

“Ka-Band Monolithic Low-Noise Amplifier Using Direct Ion-Implanted GaAs MESFET’s”
M. Feng, D.R. Scherrer, P.J. Apostolakis, J.R. Middleton, M.J. McPartlin, B.D. Lauterwassler, and J.D Oliver, Jr. IEEE Microwave and Guided Wave Letters, May 1995

“Eye‐diagram and scattering parameter characterization of superconducting and gold coplanar transmission lines,” J. Kruse, WH Chang, D. Scherrer, M. Feng, M. Scharen, A. Cardona and R. Forse. , 1994. Appl.Phys.Lett. 65, 19, 2478-2480.

“Optimal noise matching of 0.25 micron gate GaAs MESFETs for low power personal communications receiver circuit designs,” D. Scherrer, PJ Apostolakis, J. Middleton, J. Kruse and M. Feng. , 1994. 1439-1442 vol. 3.

“Design and fabrication of 5 Gb/s fully integrated OEIC receivers using direct ion implanted GaAs MESFET-MSM,” C. G. Shih, D. Barlage, J. S. Wang and M. Feng. , 1994. 1379-1382 vol. 3.

“Low noise device and amplifier characterization for deep space communication applications,” J. Laskar, JJ Bautista, B. Fujiwara, D. Scherrer and M. Feng. , 1993. 1095-1098 vol. 2.

“Temperature-dependent bit-error-rate characterization of ultralow-noise GaAs MESFET’s for 3-Gb/s operation,” J. Laskar, M. Feng and J. Kruse. , 1993. Electron Device Letters, IEEE 14, 2, 57-59.

“Cryogenic small-signal model for 0.55 μm gate-length ion-implanted GaAs MESFET’s,” J. Laskar, J. Kruse and M. Feng. , 1992. Microwave and Guided Wave Letters, IEEE 2, 6, 242-244.

“Characterization of ion‐implanted InxGa1-xAs/GaAs 0.25 μm gate metal semiconductor field‐effect transistors with Ft≳ 100 GHz,” M. Feng, J. Laskar, W. Miller, J. Kolodzey, GE Stillman and CL Lau. , 1991. Appl.Phys.Lett. 58, 23, 2690-2691.

“A technique for correction of parasitic capacitance on microwave ft measurements of MESFET and HEMT devices,” M. Feng, CL Lau and C. Ito. , 1991. Microwave Theory and Techniques, IEEE Transactions on 39, 11, 1880-1882.

“Cryogenic Vacuum On-Wafer Probe Svstem,” J. Laskar, J. Kruse, M. Feng and J. Kolodzey. , 1991. 20, 44-52.

Mixed Signal/Microwave Circuit Design and Device Modeling

D. Chan and M. Feng, “A Compact W-Band CMOS Power Amplifier with Gain Boosting and Short-circuited Stub Matching for High Power and High Efficiency Operation,” in IEEE Microwave and Wireless Components Letter, vol. 21, issue 2, pp. 98-100, Feb 2011.

D. Chan and M. Feng, “W-band monolithic CPW Wilkinson CMOS power amplifier,” in IEEE Topical Conf. on Power Amplif. for Wireless and Radio Appl., Jan. 2011, pp. 33-36.

D. Chan and M. Feng, “Distributed Modeling of Layout Parasitics Effects in CMOS Power Devices”, European Microwave Conference, Sept. 2010, pp. 242-245.

“Drifting-Dipole Noise (DDN) Model of MOSFETs for Microwave Circuit Design,” G. D. Nguyen and M. Feng. , 2010. Microwave Theory and Techniques, IEEE Transactions on 58, 12, 3433-3443.

“24-GHz low noise amplifier using coplanar waveguide series feedback in 130-nm CMOS,” G. D. Nguyen, Yun Chiu and M. Feng. , 2009. Microwave Conference, 2009. APMC 2009. Asia Pacific 1148-1151.

D. Chan and M. Feng, “2.5 GHz CMOS Power Amplifier Integrated with Low Loss Matching Network for WiMAX Applications” Asia Pacific Microwave Conference, 2009, pp. 1108-1111.

“Radio-Frequency-Noise Characterization and Modeling of Type-II InP–GaAsSb DHBT,” Y. J. Chuang, K. Cimino, M. Stuenkel, W. Snodgrass and M. Feng. , 2008. Electron Device Letters, IEEE 29, 1, 21-23.

“A RF CMOS amplifier with optimized gain, noise, linearity and return losses for UWB applications,” G. D. Nguyen, K. Cimino and M. Feng. , 2008. 505-508.

“A wideband InP DHBT true logarithmic amplifier,” Y. J. Chuang, K. Cimino, M. Stuenkel, M. Feng, M. Le and R. Milano. , 2006. Microwave Theory and Techniques, IEEE Transactions on 54, 11, 3843-3847.

“Design of variable gain amplifier with gain-bandwidth product up to 354 GHz implemented in InP-InGaAs DHBT technology,” J. W. Lai, Y. J. Chuang, K. Cimino and M. Feng. , 2006. Microwave Theory and Techniques, IEEE Transactions on 54, 2, 599-607.

“300 GHz InP DHBT large signal model including current blocking effect and validated by Gilbert multiplier circuits,” JW Lai, D. Caruth, YJ Chuang, K. Cimino, R. Elder, D. Jansen, F. Stroili, M. Le and M. Feng. , 2005. 4 pp.

“Observations of Current Blocking in InP/GaAsSb DHBTs,” B. F. Chu-Kung, S. C. Shen, W. Hafez and M. Feng. , 2004.

“Low-power, high-gain, and high-linearity SiGe BiCMOS wide-band low-noise amplifier,” Q. He and M. Feng. , 2004. Solid-State Circuits, IEEE Journal of 39, 6, 956-959.

“Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles,” R. Chan, R. Lesnick, D. Becher and M. Feng. , 2003. Microelectromechanical Systems, Journal of 12, 5, 713-719.

“Ultra broadband MEMS switch on Silicon and GaAs substrates,” R. Chan, R. Lesnick, D. Caruth and M. Feng. , 2003.

“Reliability study of low-voltage RF MEMS switches,” D. Becher, R. Chan, M. Hattendorf and M. Feng. , 2002. 54-57.

“A 40 Gb/s integrated differential PIN TIA with DC offset control using InP SHBT technology,” D. Caruth, SC Shen, D. Chan, M. Feng and J. Schutt-Aine. , 2002. 59-62.

“Method to determine intrinsic and extrinsic base-collector capacitance of HBTs directly from bias-dependent S-parameter data,” M. Hattendorf, D. Scott, Q. Yang and M. Feng. , 2001. Electron Device Letters, IEEE 22, 3, 116-118.

“Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” JJ Huang, M. Hattendorf, M. Feng, DJH Lambert, BS Shelton, MM Wong, U. Chowdhury, TG Zhu, HK Kwon and RD Dupuis. , 2001. Electron Device Letters, IEEE 22, 4, 157-159.

“Low-cost 38 and 77 GHz CPW MMICs using ion-implanted GaAs MESFETs,” DC Caruth, RL Shimon, MS Heins, H. Hsia, Z. Tang, SC Shen, D. Becher, JJ Huang and M. Feng. , 2000. 2, 995-998 vol. 2.

“Impact of 1/f noise in Ka-band InGaP/GaAs HBT frequency sources,” MS Heins, MS Hein, T. Juneja, D. Caruth, M. Hattendorf and M. Feng. , 2000. 2, 1209-1212 vol. 2.

“Low-power decimation filters for oversampling ADCs via the decorrelating(DECOR) transform,” D. Seo, N. R. Shanbhag and M. Feng. , 2000. 3,

“A 14 bit, 1 GS/s digital-to-analog converter with improved dynamic performances,” D. Seo, A. Weil and M. Feng. , 2000. 5, 541-544 vol. 5.

“W-band InGaP/GaAs HBT MMIC frequency sources,” MS Heins, T. Juneja, JA Fendrich, J. Mu, D. Scott, Q. Yang, M. Hattendorf, GE Stillman and M. Feng. , 1999. 1, 239-242 vol. 1.

“Exact noise parameters of lossy transmission lines,” R. Shimon and M. Feng. , 1999. 1, 47-50 vol. 1.

“Bandgap shifting of an ultra-thin InGaAs/InP quantum well infrared photodetector via rapid thermal annealing” Sengupta, D K. Kim, S. Kuo, H C. Curtis, A P. Hsieh, K C. Bishop, S G. Feng, M. Stillman, G E. Gunapala, S D. Bandara, S V. Chang, Y C. Liu, H C. Rapid Thermal and Integrated Processing VII Materials Research Society Symposium – Proceedings. v 525 1998. MRS, Warrendale, PA, USA. p 385-390

“Redshifting and broadening of quantum-well infrared photodetector’s response via impurity-free vacancy disordering”
Sengupta, Deepak. Jandhyala, Vikram. Kim, Sangsig. Fang, Weich. Malin, Jay. Apostolakis, Peter. Hsieh, Kwong-Chi. Chang, Yia-Chung. Chuang, Shun Lien. Bandara, Sumith. Gunapala, Sarath. Feng, Milton. Michielssen, Eric. Stillman, Greg. IEEE Journal of Selected Topics in Quantum Electronics. v 4 n 4 Jul-Aug 1998. p 746-757

“Efficient analysis of large two-dimensional arbitrarily shaped finite gratings for quantum well infrared photodetectors”
Jandhyala, Vikram. Sengupta, Deepak. Shanker, Balasubramaniam. Michielssen, Eric. Feng, Milton. Stillman, Greg. Annual Review of Progress in Applied Computational Electromagnetics. v 1 1998. Applied Computational Electromagnetics Soc, Monterey, CA, USA. p 204-209

“Efficient electromagnetic analysis of two-dimensional finite quasi-random gratings for quantum well infrared photodetectors”
Jandhyala, Vikram. Sengupta, Deepak. Shanker, Balasubramaniam. Michielssen, Eric. Feng, Milton. Stillman, Greg. Journal of Applied Physics. v 83 n 6 Mar 15 1998. p 3360-3363

“Growth and characterization of InGaAs/InP p-quantum-well infrared photodetectors with extremely thin quantum wells”
Sengupta, D K. Jackson, S L. Curtis, A P. Fang, W. Malin, J I. Horton, T U. Kuo, H C. Moy, A. Miller, J. Hsieh, K C. Cheng, K Y. Chen, H. Adesida, I. Chuang, S L. Feng, M. et al. Journal of Electronic Materials. v 26 n 12 Dec 1997. p 1382-1388

“Growth and characterization of n-type InP/InGaAs quantum well infrared photodetectors for response at 8.93 mu m”
Sengupta, D K. Jackson, S L. Curtis, A P. Fang, W. Malin, J I. Horton, T U. Hartman, Q. Kuo, H C. Thomas, S. Miller, J. Hsieh, K C. Adesida, I. Chuang, S L. Feng, M. Stillman, G E. et al. Journal of Electronic Materials. v 26 n 12 Dec 1997. p 1376-1381

“GaAs/AlGaAs quantum-well infrared photodetectors on GaAs-on-Si substrates”
Sengupta, D K. Fang, W. Malin, J I. Li, J. Horton, T. Curtis, A P. Hsieh, K C. Chuang, S L. Chen, H. Feng, M. Stillman, G E. Li, L. Liu, H C. Bandara, K M S V. Gunapala, S D. et al. Applied Physics Letters. v 71 n 1 Jul 7 1997. p 78-80

“64-Gbit/s GaAs integrated DANE receiver/laser driver”
Chang, Wei-Heng. Mu, Jinghui H. Heins, M. Feng, Milton. Kim, J. McCallum, David S. Stone, Richard V. Guilfoyle, Peter S. Proceedings of SPIE – The International Society for Optical Engineering. v 3005 1997. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA. p 334-353

“High-speed two-dimensional OEIC transceiver arrays”
Chang, Wei-Heng. Feng, Milton. Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E/Chung Kuotien Chi Kung Chieng Hsueh K’An. v 4 n 3 Aug 1997. p 213-225

“Design and fabrication of low-power 1-Gb/s OEIC receivers”
Chang, Wei-Heng. Airola, Darwin D. Feng, Milton. Proceedings of SPIE – The International Society for Optical Engineering v CR62 1996. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA.. p 244-266

“Material Design and Qualification on Power InGaP HBTs for 2.4 GHz Transmitter Applications”
J. J. Huang, M. Hattendorf, M. Feng, Q. Hartmann, and D. Ahmari, 2001 GaAs MANTECH

“Low cost 38GHz and 77GHz CPW MMICs using ion-implanted GaAs MESFETs”
D. Caruth, R.L. Shimmon, M. Heins, H. Hsia, Z. Tang, S.C. Shen, D. Becher, and M. Feng, MTT Symposium Digest, June 2000

“A 14 Bit, 1GS/s Digital-To-Analog Converter with Improved Dynamic Performances”
D. Seo, A. Weil, and M. Feng, Accepted, IEEE ISCAS 2000 PS PDF

“A Very Wide-Band 14Bit, 1GS/s Track-and-Hold Amplifier”
D. Seo, A. Weil, and M. Feng Accepted, IEEE ISCAS 2000 PS PDF

“Low-Power Decimation Filters for Oversampling ADCs via the Decorrelating (DECOR) Transform”
D. Seo, N. Shanbhag, and M. Feng Accepted, IEEE ISCAS 2000 PS PDF

“A Low Cost 77 GHz MMICs Process Using Direct Ion-Implanted GaAs MESFETs”
H. Hsia, J.R. Middleton, Z. Tang, R. Shimon, D. Caruth, D. Becher, J. Fendrich, and M. Feng, 1998 GaAs MANTECH

“Low cost coplanar 77 GHz single-balanced mixer using ion-implanted GaAs Schottky diodes”
Shimon, R. Caruth, D. Middleton, J. Hsia, H. Feng, M. Mondal, J. Moghe, S. IEEE MTT-S International Microwave Symposium Digest. v 3 1998. IEEE, Piscataway, NJ, USA,98CH36192. p 1439-1442 TH2E-5

“Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide”
Heins, M S. Barlage, D W. Fresina, M T. Ahmari, D A. Hartmann, Q J. Stillman, G E. Feng, M. IEEE Radio Frequency Integrated Circuits Symposium, RFIC, Digest of Technical Papers 1997. IEEE, Piscataway, NJ, USA,97CH36095.. p 215-218

“Accurate passive component models in coplanar waveguide for 50 GHz MMICs”
Shimon, R. Scherrer, D. Caruth, D. Middleton, J. Hsia, H. Feng, M. IEEE MTT-S International Microwave Symposium Digest. v 2 1997. IEEE, Piscataway, NJ, USA,97CH36037. p 769-772

“Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide”
Heins, M S. Barlage, D W. Fresina, M T. Ahmari, D A. Hartmann, Q J. Stillman, G E. Feng, M. IEEE MTT-S International Microwave Symposium Digest. v 1 1997. IEEE, Piscataway, NJ, USA,97CH36037. p 255-258

“Ka-Band Monolithic Low-Noise Amplifier Using Direct Ion-Implanted GaAs MESFET’s”
M. Feng, D.R. Scherrer, P.J. Apostolakis, J.R. Middleton, M.J. McPartlin, B.D. Lauterwassler, and J.D Oliver, Jr. IEEE Microwave and Guided Wave Letters, May 1995

“Eye‐diagram and scattering parameter characterization of superconducting and gold coplanar transmission lines,” J. Kruse, WH Chang, D. Scherrer, M. Feng, M. Scharen, A. Cardona and R. Forse. , 1994. Appl.Phys.Lett. 65, 19, 2478-2480.

“Optimal noise matching of 0.25 micron gate GaAs MESFETs for low power personal communications receiver circuit designs,” D. Scherrer, PJ Apostolakis, J. Middleton, J. Kruse and M. Feng. , 1994. 1439-1442 vol. 3.

“Design and fabrication of 5 Gb/s fully integrated OEIC receivers using direct ion implanted GaAs MESFET-MSM,” C. G. Shih, D. Barlage, J. S. Wang and M. Feng. , 1994. 1379-1382 vol. 3.

“Low noise device and amplifier characterization for deep space communication applications,” J. Laskar, JJ Bautista, B. Fujiwara, D. Scherrer and M. Feng. , 1993. 1095-1098 vol. 2.

“Temperature-dependent bit-error-rate characterization of ultralow-noise GaAs MESFET’s for 3-Gb/s operation,” J. Laskar, M. Feng and J. Kruse. , 1993. Electron Device Letters, IEEE 14, 2, 57-59.

“Cryogenic small-signal model for 0.55 μm gate-length ion-implanted GaAs MESFET’s,” J. Laskar, J. Kruse and M. Feng. , 1992. Microwave and Guided Wave Letters, IEEE 2, 6, 242-244.

“Characterization of ion‐implanted InxGa1-xAs/GaAs 0.25 μm gate metal semiconductor field‐effect transistors with Ft≳ 100 GHz,” M. Feng, J. Laskar, W. Miller, J. Kolodzey, GE Stillman and CL Lau. , 1991. Appl.Phys.Lett. 58, 23, 2690-2691.

“A technique for correction of parasitic capacitance on microwave ft measurements of MESFET and HEMT devices,” M. Feng, CL Lau and C. Ito. , 1991. Microwave Theory and Techniques, IEEE Transactions on 39, 11, 1880-1882.

“Cryogenic Vacuum On-Wafer Probe Svstem,” J. Laskar, J. Kruse, M. Feng and J. Kolodzey. , 1991. 20, 44-52.